株式会社キャンパスクリエイト

お客様の課題解決を
産学官連携・オープンイノベーションで実践する広域TLO

TEL 042-490-5734

(調布オフィス)
〒182-8585 東京都調布市調布ヶ丘1-5-1
国立大学法人電気通信大学産学官連携センター内

おもてなし規格認証2019 KAIKA Awards 特選紹介事例を受賞

開放特許情報

ライセンス可能な特許情報を掲載しています。

特許検索

技術分野を選択
キーワードを入力

特許情報

発明の名称 経路計算装置および方法、並びにプログラム
技術分野 IT
出願番号 特願2009-12604
概要

【要約】

【課題】
大規模なネットワークにおいて、より利用効率の高いネットワークリソースを割り当てる。

【解決手段】
制約条件取得部91は、ネットワークにおけるトラヒック量の上限値および下限値を取得し、線形計画問題計算部93は、取得された上限値および下限値の両方を含む制約条件を基に、ネットワークを表現するホースモデルについて、ネットワークにおける全リンクの使用率の最大値であるネットワーク輻輳率を最小化するように記述された線形計画問題を解くことで、ネットワークの各リンクに割り当てるべきリソース(帯域)を計算し、リソース割当部72は、リソースの計算結果に基づいて、ネットワークの各リンクにリソースを割り当て、経路計算部73は、割り当てられたリソースに基づいて、ネットワークにおけるノード間の経路計算を行う。本発明は、例えば、ネットワークの経路を計算する経路計算装置に適用することができる。

【特許請求の範囲】

【請求項1】
複数のノードから形成されるネットワークの始点ノードと終点ノードとの間のトラヒック量の上限値および下限値の両方またはいずれか一方を取得する取得手段と、
前記取得手段によって取得された前記上限値および前記下限値の両方またはいずれか一方を含む前記トラヒック量で規定される制約条件を基に、前記ネットワークを表現するホースモデルについて、前記ネットワークにおける全てのリンクの使用率の最大値であるネットワーク輻輳率を最小化するように記述された線形計画問題を解くことで、前記ネットワークの各リンクに割り当てるべき帯域を計算する帯域計算手段と、
前記帯域計算手段の計算結果に基づいて、前記ネットワークの各リンクに帯域を割り当てる割当手段と、
前記割当手段によって割り当てられた帯域に基づいて、前記ネットワークにおけるノード間の経路計算を行う経路計算手段と
を備える経路計算装置。

【請求項2】
前記線形計画問題における前記制約条件を、双対定理を用いて他の制約条件に変換する変換手段をさらに備え、
前記帯域計算手段は、前記変換手段によって変換された前記他の制約条件を基に、前記線形計画問題を解くことで、前記ネットワークの各リンクに割り当てるべき帯域を計算する
請求項1に記載の経路計算装置。

【請求項3】
前記変換手段は、前記トラヒック量で規定される前記制約条件を、前記ネットワークの各リンクに対して一意的なパラメータで規定される前記他の制約条件に変換する
請求項2に記載の経路計算装置。

【請求項4】
複数のノードから形成されるネットワークの始点ノードと終点ノードとの間のトラヒック量の上限値および下限値の両方またはいずれか一方を取得する取得ステップと、
前記取得ステップの処理によって取得された前記上限値および前記下限値の両方またはいずれか一方を含む前記トラヒック量で規定される制約条件を基に、前記ネットワークを表現するホースモデルについて、前記ネットワークにおける全てのリンクの使用率の最大値であるネットワーク輻輳率を最小化するように記述された線形計画問題を解くことで、前記ネットワークの各リンクに割り当てるべき帯域を計算する帯域計算ステップと、
前記帯域計算ステップにおける計算結果に基づいて、前記ネットワークの各リンクに帯域を割り当てる割当ステップと、
前記割当ステップの処理によって割り当てられた帯域に基づいて、前記ネットワークにおけるノード間の経路計算を行う経路計算ステップと
を含む経路計算方法。

【請求項5】
複数のノードから形成されるネットワークの始点ノードと終点ノードとの間のトラヒック量の上限値および下限値の両方またはいずれか一方を取得する取得ステップと、
前記取得ステップの処理によって取得された前記上限値および前記下限値の両方またはいずれか一方を含む前記トラヒック量で規定される制約条件を基に、前記ネットワークを表現するホースモデルについて、前記ネットワークにおける全てのリンクの使用率の最大値であるネットワーク輻輳率を最小化するように記述された線形計画問題を解くことで、前記ネットワークの各リンクに割り当てるべき帯域を計算する帯域計算ステップと、
前記帯域計算ステップにおける計算結果に基づいて、前記ネットワークの各リンクに帯域を割り当てる割当ステップと、
前記割当ステップの処理によって割り当てられた帯域に基づいて、前記ネットワークにおけるノード間の経路計算を行う経路計算ステップと
を含む処理をコンピュータに実行させるプログラム。

発明の名称 スペクトル位相補償方法及びスペクトル位相補償装置
技術分野 ものづくり, ナノテクノロジー
出願番号 特願2009-12229
概要

【要約】

【課題】
繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を安価で単純な装置で行う。

【解決手段】
それぞれくさび形の断面形状を有し、互いに斜面21A1,21B1を対向させて配され、少なくとも一方の光学素子が斜面に沿って移動することにより、互いに平行な入射面21A2と出射面21B2との距離が可変自在とされ、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整される厚さtが調整自在な平行平板部21を形成する正分散媒質からなる1対の光学素子21A,21Bを有するスペクトル位相補償装置20により、 広帯域光Lwのスペクトルの位相補償を行う。

【特許請求の範囲】

【請求項1】
隣り合うスペクトルの位相差を2πの整数倍とする厚さの正分散媒質からなる平行平板を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とするスペクトル位相補償方法。

【請求項2】
隣り合うスペクトルの位相差を2πの整数倍とする厚さの正分散媒質からなり、広帯域光が入射される平行平板を備え、
上記平行平板を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とするスペクトル位相補償装置。

【請求項3】
それぞれくさび形の断面形状を有し、互いに斜面を対向させて配され、少なくとも一方の光学素子が斜面に沿って移動することにより、互いに平行な入射面と出射面との距離が可変自在とされた正分散媒質からなる1対の光学素子により、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整された平行平板部を形成し、
上記平行平板部を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とするスペクトル位相補償方法。

【請求項4】
上記平行平板部の厚さを、入射される広帯域光に存在する2次分散を打ち消して、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整することを特徴とする請求項3記載のスペクトル位相補償方法。

【請求項5】
それぞれくさび形の断面形状を有し、互いに斜面を対向させて配され、少なくとも一方の光学素子が斜面に沿って移動することにより、互いに平行な入射面と出射面との距離が可変自在とされ、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整される厚さが調整自在な平行平板部を形成する正分散媒質からなる1対の光学素子を有し、
上記平行平板部を透過させることにより、広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とするスペクトル位相補償装置。

【請求項6】
上記平行平板部は、入射される広帯域光に存在する2次分散を打ち消して、隣り合うスペクトルの位相差を2πの整数倍とする厚さに調整されることを特徴とする請求項5記載のスペクトル位相補償装置。

【請求項7】
それぞれくさび形の断面形状を有し、互いに斜面を対向させて配され、少なくとも一方の光学素子が斜面に沿って移動することにより、互いに平行な入射面と出射面との距離が可変自在とされた正分散媒質からなる1対の光学素子により形成される厚さが調整自在な平行平板部に広帯域光を入射し、
上記平行平板部を透過した光を検出し、その検出出力に基づいて上記1対の光学素子の少なくとも一方の光学素子が斜面に沿って移動させる駆動部を動作させ、上記平行平板部の厚さを隣り合うスペクトルの位相差を2πの整数倍とする厚さに制御し、
上記平行平板部を透過させることにより、上記広帯域光から繰り返し周波数の高い超短光パルスの生成のためのスペクトル位相の補償を行うことを特徴とするスペクトル位相補償方法。

(以下、詳細は特許公報をご参照ください)

発明の名称 制御装置および制御方法、ノードおよび送信方法
技術分野 IT
出願番号 特願2008-323060
概要

【要約】

【課題】
トラヒックを効果的に分散させ、ネットワークの使用効率を向上させる。

【解決手段】ネットワーク12は、複数のノード21がリンク20を介して接続されることにより構成され、発ノード21に入力されたトラヒックを、中間ノード21を介して着ノード21に送信する。トラヒック量割合算出装置11は、ネットワークの構成、および、リンク20の使用可能な帯域の容量に基づいて、発ノード21と着ノード21の組み合わせごとに、各ノード21を中間ノードとしてトラヒックを分散させる割合を算出する。本発明は、例えば、ノードを制御する装置に適用することができる。

【特許請求の範囲】

【請求項1】
複数のノードがリンクを介して接続されることにより構成されるネットワークにおいて、発ノードに入力されたトラヒックを、中間ノードを介して着ノードに送信する場合に、前記トラヒックの通信を制御する制御装置において、
前記ネットワークの構成、および、前記リンクの使用可能な帯域の容量に基づいて、前記発ノードと前記着ノードの組み合わせごとに、各ノードを前記中間ノードとして前記トラヒックを分散させる割合を算出する算出手段
を備える制御装置。

【請求項2】
前記算出手段は、前記ネットワークの構成、前記リンクの使用可能な帯域の容量、および前記トラヒックに関する情報に基づいて、前記割合を算出する
請求項1に記載の制御装置。

【請求項3】
前記算出手段は、前記ネットワークのモデルとしてパイプモデルを仮定し、前記割合を算出する
請求項2に記載の制御装置。

【請求項4】
前記算出手段は、前記ネットワークのモデルとしてホースモデルを仮定し、前記割合を算出する
請求項1に記載の制御装置。

【請求項5】
複数のノードがリンクを介して接続されることにより構成されるネットワークにおいて、発ノードに入力されたトラヒックを、中間ノードを介して着ノードに送信する場合に、前記トラヒックの通信を制御する制御装置の制御方法において、
前記ネットワークの構成、および、前記リンクの使用可能な帯域の容量に基づいて、前記発ノードと前記着ノードの組み合わせごとに、各ノードを前記中間ノードとして前記トラヒックを分散させる割合を算出する算出ステップ
を含む制御方法。

【請求項6】
ネットワークを構成するノードであって、入力されたトラヒックを、前記ネットワーク内の中間ノードを介して、前記ネットワーク内の着ノードに送信するノードにおいて、
前記トラヒックが入力される発ノードとしての前記ノードと前記着ノードの組み合わせごとに求められた、前記ネットワーク内の各ノードを前記中間ノードとして前記トラヒックを分散させる割合に基づいて、前記トラヒックを送信する中間ノードを決定する決定手段と、
前記決定手段により決定された前記中間ノードに前記トラヒックを送信する送信手段と
を備えるノード。

【請求項7】
ネットワークを構成するノードであって、入力されたトラヒックを、前記ネットワーク内の中間ノードを介して、前記ネットワーク内の着ノードに送信するノードの送信方法において、
前記トラヒックが入力される発ノードとしての前記ノードと前記着ノードの組み合わせごとに求められた、前記ネットワーク内の各ノードを前記中間ノードとして前記トラヒックを分散させる割合に基づいて、前記トラヒックを送信する中間ノードを決定する決定ステップと、
前記決定ステップの処理により決定された前記中間ノードに前記トラヒックを送信する送信ステップと
を含む送信方法。

発明の名称 発振器の内部機構の推定方法、推定プログラム及び推定装置
技術分野 IT
出願番号 特願2008-320113
概要

【要約】

【課題】
発振器の位相雑音や注入同期特性等の内部機構に関する情報をより簡易に且つ精度良く推定する方法を提供する。

【解決手段】
まず、発振器に周波数の引き込み現象が生じる周波数範囲内の種々の周波数を有する交流信号をそれぞれ発振器に注入して、周波数毎に発振器と交流信号との発振位相差を求める。次いで、周波数毎の発振位相差及び交流信号の各周波数と発振器の自然周波数との差に基づいて、フーリエ級数で表される発振器のインパルス感度関数の交流成分のフーリエ係数を算出する。また、直流信号を発振器に注入して、発振位相差の時間変化率を求める。次いで、測定した発振位相差の時間変化率に基づいて、インパルス感度関数の直流成分のフーリエ係数を算出する。次いで、算出された交流成分及び直流成分のフーリエ係数を用いてインパルス感度関数を算出する。そして算出したインパルス感度関数を用いて発振器の内部機構を推定する。

【特許請求の範囲】

【請求項1】
発振器の内部機構を推定する方法であって、
前記発振器に周波数の引き込み現象が生じる周波数範囲内の種々の周波数を有する交流信号をそれぞれ前記発振器に注入して、周波数毎に前記発振器と前記交流信号との発振位相差に関する情報を求めるステップと、
前記周波数毎の前記発振位相差に関する情報、及び、前記交流信号の各周波数と前記発振器の自然周波数との差に基づいて、フーリエ級数で表される前記発振器のインパルス感度関数の所定次数までの交流成分のフーリエ係数を算出するステップと、
直流信号を前記発振器に注入して、前記発振位相差の時間変化率に関する情報を求めるステップと、
測定した前記発振位相差の時間変化率に関する情報に基づいて、前記インパルス感度関数の直流成分のフーリエ係数を算出するステップと、
算出された前記交流成分及び直流成分のフーリエ係数を用いて前記インパルス感度関数を推定するステップと、
を含む推定方法。

【請求項2】
前記発振位相差に関する情報が、前記発振位相差の時間平均値である
請求項1に記載の推定方法。

【請求項3】
さらに、
前記発振位相差に関する情報を求めるステップの前に、前記引き込み現象が生じる周波数範囲内の所定周波数を有し且つ所定振幅を有する交流信号を前記発振器に注入して、前記引き込み現象が生じるか否かを判定するステップと、
前記判定ステップで、前記発振器に前記引き込み現象が生じない場合、前記交流信号の振幅を、前記引き込み現象が生じる範囲の振幅に増大させるステップと、
前記振幅を増大させた前記交流信号の周波数を前記引き込み現象が生じる周波数範囲内で種々変化させて前記発振器に注入して得られる、周波数毎の前記発振位相差に関する情報と、前記振幅を増大させた前記交流信号の各周波数と前記発振器の自然周波数との差との関係に基づいて、前記所定振幅を有する交流信号を前記発振器に注入した際の前記発振位相差に関する情報と、前記所定振幅を有する交流信号の周波数及び前記発振器の自然周波数間の差との関係を推定するステップとを含み、
前記交流成分のフーリエ係数を算出するステップでは、前記推定された、前記所定振幅を有する交流信号を前記発振器に注入した際の前記発振位相差に関する情報と、前記所定振幅を有する交流信号の周波数及び前記発振器の自然周波数間の差との前記関係に基づいて、前記発振器のインパルス感度関数の所定次数までの交流成分のフーリエ係数を算出する
請求項2に記載の推定方法。

【請求項4】
前記発振位相差の時間変化率に関する情報が、前記発振位相差の時間変化率の時間平均値である
請求項1~3のいずれか一項に記載の推定方法。

(以下、詳細は特許公報をご参照ください)

発明の名称 マグネシウム合金材料を製造する方法
技術分野 ものづくり
出願番号 特願2008-292072
概要

【要約】

【課題】
従来のマグネシウム合金に比べて、高い強度を有するマグネシウム合金を提供することを目的とする。

【解決手段】
マグネシウム合金材料を製造する方法であって、少なくともアルミニウムと亜鉛とを添加元素として含む、マグネシウム合金の被加工材料を準備するステップと、前記被加工材料を降温多軸鍛造処理するステップと、前記降温多軸鍛造処理された被加工材料を、最大20%の圧下率で圧延処理するステップと、を有することを特徴とする方法。

【特許請求の範囲】

【請求項1】
マグネシウム合金材料を製造する方法であって、
少なくともアルミニウムと亜鉛とを添加元素として含む、マグネシウム合金の被加工材料を準備するステップと、
前記被加工材料を降温多軸鍛造処理するステップと、
前記降温多軸鍛造処理された被加工材料を、最大20%の圧下率で圧延処理するステップと、
を有することを特徴とする方法。

【請求項2】
さらに、
前記圧延処理された被加工材料を、時効処理するステップを有することを特徴とする請求項1に記載の方法。

【請求項3】
前記被加工材料を降温多軸鍛造処理するステップは、
573K~673Kの範囲で第1回目のパスの鍛造を行い、403K~523Kの範囲で最後のパスの鍛造を行う降温多軸鍛造処理ステップを有することを特徴とする請求項1または2に記載の方法。

【請求項4】
前記被加工材料を降温多軸鍛造処理するステップにおいて、
第N回目のパスの鍛造(Nは、1以上の整数)と、第N+1回目のパスの鍛造との温度差は、10K~100Kの範囲にあることを特徴とする請求項1乃至3のいずれか一つに記載の方法。

【請求項5】
前記被加工材料を降温多軸鍛造処理するステップは、
第N回目のパスの鍛造(Nは、1以上の整数)において、3×10-3/sec~3×10-1/secの範囲のひずみ速度で、前記被加工材料を降温多軸鍛造処理するステップを有することを特徴とする請求項1乃至4のいずれか一つに記載の方法。

【請求項6】
最後のパスの鍛造におけるひずみ速度は、第1回目のパスの鍛造におけるひずみ速度よりも大きいことを特徴とする請求項1乃至5のいずれか一つに記載の方法。

【請求項7】
各パスの鍛造におけるひずみ速度は、実質的に等しいことを特徴とする請求項1乃至5のいずれか一つに記載の方法。

【請求項8】
前記被加工材料を降温多軸鍛造処理するステップにより、前記被加工材料に、1.0~6.4の範囲の総歪み量が導入されることを特徴とする請求項1乃至7のいずれか一つに記載の方法。

【請求項9】
前記被加工材料を降温多軸鍛造処理するステップにより、平均結晶粒径が最大2μm以下の被加工材料が得られることを特徴とする請求項1乃至8のいずれか一つに記載の方法。

【請求項10】
前記圧延処理するステップは、室温で実施されることを特徴とする請求項1乃至9のいずれか一つに記載の方法。

【請求項11】
前記時効処理するステップは、
前記圧延処理された被加工材料を、373K~473Kの温度範囲で時効処理するステップを有することを特徴とする請求項2乃至10のいずれか一つに記載の方法。

【請求項12】
前記被加工材料は、2~10質量%のアルミニウムと、0.1~2質量%の亜鉛とを含むマグネシウム合金材料であることを特徴とする請求項1乃至11のいずれか一つに記載の方法。

【請求項13】
前記被加工材料は、さらに、
マンガン、鉄、シリコン、銅、ニッケルおよびカルシウムからなる群から選定された少なくとも一つの元素を含むことを特徴とする請求項12に記載の方法。

【請求項14】
前記被加工材料は、2.5~3.5質量%のアルミニウムと、0.6~1.4質量%の亜鉛とを含むマグネシウム合金材料であることを特徴とする請求項12または13に記載の方法。

【請求項15】
前記被加工材料は、5.5~7.2質量%のアルミニウムと、0.5~1.5質量%の亜鉛とを含むマグネシウム合金材料であることを特徴とする請求項12または13に記載の方法。

【請求項16】
前記被加工材料は、8.3~9.7質量%のアルミニウムと、0.35~1.0質量%の亜鉛とを含むマグネシウム合金材料であることを特徴とする請求項12または13に記載の方法。