株式会社キャンパスクリエイト

お客様の課題解決を
オープンイノベーションで実践する
広域TLO

(調布オフィス)
〒182-8585 東京都調布市調布ヶ丘1-5-1
国立大学法人電気通信大学産学官連携センター内

開放特許情報

ライセンス可能な特許情報を掲載しています。

特許検索

技術分野を選択
キーワードを入力

特許情報

発明の名称 マグネシウムの回収方法
技術分野 ものづくり, 環境/有機化学/無機化学
出願番号 特願2016-11480
概要

【要約】
【課題】比較的低いコストでマグネシウムを回収することを可能にする、マグネシウムの回収方法を提供する。
【解決手段】マグネシウムを含む原料と有機物を混合して、混合物を得て、その後、混合物を、不活性ガス雰囲気中、300℃~1300℃の範囲内の温度で加熱することにより、原料中のマグネシウムを蒸発させ、蒸発したマグネシウムを、冷却して固体化させて回収する。

【特許請求の範囲】
【請求項1】
 マグネシウムを含む原料からマグネシウムを回収する方法であって、マグネシウムを含む原料と有機物を混合して、混合物を得て、その後、前記混合物を、不活性ガス雰囲気中、300℃~1300℃の範囲内の温度で加熱することにより、前記原料中のマグネシウムを蒸発させ、蒸発したマグネシウムを、冷却して固体化させて回収する マグネシウムの回収方法。
【請求項2】
 前記原料としてグリーンサンドを使用する、請求項1に記載のマグネシウムの回収方法。
【請求項3】
 前記混合物を加熱する温度を900℃~1200℃の範囲内とする、請求項1または請求項2に記載のマグネシウムの回収方法。

発明の名称 フェノールの製造方法
技術分野 環境/有機化学/無機化学
出願番号 特願2016-211810
概要

【要約】
【課題】ベンゼンからフェノールを直接酸化によって効率よく製造する。
【解決手段】アルカリ金属及びアルカリ土類金属のうち1種以上を担持する多孔質金属酸化物、及びアンモニアの存在下で、ベンゼンを酸素で酸化することでフェノールを製造する。また、アルカリ金属及びアルカリ土類金属のうち1種以上を担持する多孔質金属酸化物の存在下で、ベンゼンをN2Oで酸化することでフェノールを製造する。多孔質金属酸化物にゼオライトを用いることができる。

【特許請求の範囲】
【請求項1】
 アルカリ金属及びアルカリ土類金属のうち1種以上を担持する多孔質金属酸化物を用いて、以下の(1)または(2)の処理を行う、フェノールの製造方法。
 (1)アンモニアの存在下で、ベンゼンを酸素で酸化する。
 (2)ベンゼンをN2Oで酸化する。
【請求項2】
 アルカリ金属及びアルカリ土類金属のうち1種以上を担持する多孔質金属酸化物、及びアンモニアの存在下で、ベンゼンを酸素で酸化する、フェノールの製造方法。
【請求項3】
 前記多孔質金属酸化物がゼオライトである、請求項2に記載のフェノールの製造方法。
【請求項4】
 ベンゼンの酸化は、290℃以上400℃以下で行う、請求項2または3に記載のフェノールの製造方法。
【請求項5】
 ベンゼンの酸化は、290℃以上320℃以下で行う、請求項4に記載のフェノールの製造方法。
【請求項6】
 ベンゼンの酸化は、320℃超過400℃以下で前処理した後に、290℃以上320℃以下で行う、請求項2から5のいずれか1項に記載のフェノールの製造方法。
【請求項7】
 アルカリ金属及びアルカリ土類金属のうち1種以上を担持する多孔質金属酸化物の存在下で、ベンゼンをN2Oで酸化する、フェノールの製造方法。
【請求項8】
 前記多孔質金属酸化物がゼオライトである、請求項7に記載のフェノールの製造方法。
【請求項9】
 ベンゼンの酸化は、200℃以上400℃以下で行う、請求項7または8に記載のフェノールの製造方法。

発明の名称 光学測定装置及び光学測定方法
技術分野 環境/有機化学/無機化学
出願番号 特願2015-156262
概要

【要約】
【課題】 標識の有無にかかわらず、ポンプ光の励起で生じる複数の物理現象を同時に観測する。
【解決手段】 光学測定装置は、試料を励起するポンプ光を出力する第1光源と、波長の異なる2以上のプローブ光を出力する第2光源と、前記2以上のプローブ光を結合させるビームコンバイナと、前記ポンプ光と結合された前記2以上のプローブ光を試料に導く光学系と、前記ポンプ光で励起された前記試料を透過した、または反射した前記2以上のプローブ光を前記波長ごとに検出する光検出器と、前記光検出器から出力されるプローブ信号をロックイン検出して前記試料に生じた2以上の物理現象を同時かつ個別に検出するロックイン増幅器と、を有する。
【特許請求の範囲】
【請求項1】
 試料を励起するポンプ光を出力する第1光源と、波長の異なる2以上のプローブ光を出力する第2光源と、前記2以上のプローブ光を結合させるビームコンバイナと、前記ポンプ光と、結合された前記2以上のプローブ光を試料に導く光学系と、前記ポンプ光で励起された前記試料を透過した、または反射した前記2以上のプローブ光を前記波長ごとに検出する光検出器と、前記光検出器から出力されるプローブ信号をロックイン検出して、前記試料に生じた2
以上の物理現象を同時かつ個別に検出するロックイン増幅器と、を有することを特徴とする光学測定装置。
【請求項2】
 前記2以上の物理現象の測定モードを選択するモード選択部、をさらに有し、前記モード選択部は、前記ポンプ光の入射により前記試料に生じる誘導放出利得、誘導放出蛍光強度減少、光熱屈折率変化、または誘導放出寿命を測定するモードを有することを特徴とする請求項1に記載の光学測定装置。
【請求項3】
 前記第1光源は、波長の異なる2以上のポンプ光を出力し、前記ビームコンバイナは、前記2以上のポンプ光を結合し、前記2以上のプローブ光のうちの1のプローブ光で、前記2以上のポンプ光の照射により生じる異なる光熱屈折率変化または異なる誘導放出寿命を同時かつ個別に測定することを特徴とする請求項1に記載の光学測定装置。
【請求項4】
 前記2以上のプローブ光と、前記2以上のポンプ光は、それぞれ異なる変調周波数で強度変調されており、前記ロックイン増幅器は、前記2以上のポンプ光の各々と、前記1のプローブ光とのビート周波数を検出することを特徴とする請求項3に記載の光学測定装置。
【請求項5】
 前記2以上のプローブ光と、前記ポンプ光は、それぞれ異なる変調周波数で強度変調されており、前記ロックイン増幅器は、前記2以上のプローブ光の各々と、前記ポンプ光とのビート周波数を検出することを特徴とする請求項1に記載の光学測定装置。
【請求項6】
 前記光検出器から出力されたプローブ信号と、対応するプローブ光を分岐した参照光の信号の強度比を一定にして差分を検出するバランス検出器、
をさらに有し、前記ロックイン増幅器は、前記バランス検出器の出力をロックイン検出することを特徴とする請求項1~5のいずれか1項に記載の光学測定装置。
【請求項7】
 前記第2光源は、2以上の単色レーザーを有することを特徴とする請求項1~6のいずれか1項に記載の光学測定装置。
【請求項8】
 前記第1光源は、2以上の単色レーザーを有することを特徴とする請求項3~7のいずれか1項に記載の光学測定装置。
【請求項9】
 第1光源から試料を励起するポンプ光を出力し、第2光源から波長の異なる2以上のプローブ光を出力し、前記2以上のプローブ光を結合させ、前記ポンプ光と、結合された前記2以上のプローブ光を試料上に走査し、前記ポンプ光で励起された前記試料を透過した、または反射された前記2以上のプローブ光を前記波長ごとに検出し、検出されたプローブ信号をロックイン検出して、前記2以上のプローブ光で、前記ポンプ光の入射により前記試料に生じた2以上の物理現象を、同時かつ個別に測定する、ことを特徴とする光学測定方法。
【請求項10】
 前記2以上の物理現象の測定モードの入力に応じて、前記ポンプ光の入射により生じる誘導放出利得、誘導放出蛍光強度減少、光熱屈折率変化、及び誘導放出寿命のうちの少なくとも2つを同時に測定することを特徴とする請求項9に記載の光学測定方法。

発明の名称 新規複素環式化合物及びその塩、並びに、発光基質組成物
技術分野 環境/有機化学/無機化学
出願番号 特願2014-189314
概要

【要約】pHが中性付近の緩衝液への溶解性に優れ、ホタル生物発光系における発光基質として利用可能な新規化合物の提供。

【発明の詳細な説明】
 本発明は、新規複素環式化合物及びその塩、並びに、発光基質組成物に関し、特には、pHが中性付近の緩衝液への溶解性に優れ、ホタル生物発光系における発光基質として利用可能な複素環式化合物に関するものである。
 生物発光系の中でも、ホタルの発光系は、発光効率に優れた系として知られている。該ホタルの発光系においては、発光基質であるホタルルシフェリンが、発光酵素のホタルルシフェラーゼと、アデノシン三リン酸(ATP)及びマグネシウムイオン(Mg2+)の存在下、励起状態のオキシルシフェリンに変換され、該オキシルシフェリンが基底状態へと失活する際に波長が約560nmの黄緑色の蛍光が発せられる。
 また、昨今、かかるホタルの発光系の発光基質の類似体として、多彩な発光波長を実現する化合物が合成されている。例えば、下記特許文献1には、ホタルルシフェリンのフェノール性水酸基を2級又は3級アミノ基で置換したルシフェリン誘導体が開示されている。また、下記特許文献2及び3には、ホタルルシフェリンと類似の分子構造を有するルシフェラーゼの発光基質が開示されている。
 これらのホタルルシフェリン類似体の中でも、長波長の光を発する発光基質は、長波長光は生体内での透過率が高いため、生体内深部の病巣を可視化するための標識材料として有望であり、例えば、和光純薬工業株式会社から商品名「アカルミネ」として、長波長光を発するホタルルシフェリン類似体が市販されている。
しかしながら、上記ホタル発光系の発光基質類似体は、多彩な発光波長を実現できるものの、水溶性が低く、特に、生体内深部の可視化に有用な長波長光を発する発光基質で顕著である。一般に、マウスやラット等の実験動物の生体内への投与においては、発光基質は1~15mg/ml程度の溶解度を有することが必要であるが、上記の長波長光を発する発光基質は、水への溶解度が約0.1mg/mlであり、実用性に問題が有った。
 これに対して、本発明者らは、特定の分子構造を有し、ホタル生物発光系における発光基質として機能する水に難溶性の発光基質を、ハロゲン化水素で塩化することで、ホタル生物発光系における発光能を保持しつつ、水溶性が大幅に向上することを見出している。
 しかしながら、上記水に難溶性の発光基質のハロゲン化水素塩は、生体内への投与のために、pHが中性付近の緩衝液に添加すると、水に難溶性の発光基質が析出してしまうという問題があった。また、上記水に難溶性の発光基質のハロゲン化水素塩をpHが約2の酸性溶液として、実験動物の生体内へ投与すると、生体内の細胞が適切に活動するためにpHが7.4前後で調節されている血液(細胞外液)のバランスが崩れる等の問題があり、実験動物への投与は可能であるが好ましくない。
 そこで、本発明の目的は、上記従来技術の問題を解決し、pHが中性付近の緩衝液への溶解性に優れ、ホタル生物発光系における発光基質として利用可能な新規化合物を提供することにある。本発明者らは、上記目的を達成するために鋭意検討した結果、特定の複素環を有する化合物が、ホタル生物発光系における発光基質として機能する上、pHが中性付近の緩衝液への溶解性に優れることを見出し、本発明を完成させるに至った。

発明の名称 新規ハロゲン化水素塩
技術分野 環境/有機化学/無機化学, 医工連携/ライフサイエンス
出願番号 特願2013-97755
概要

【課題】水溶性に優れ、ホタル生物発光系における発光基質として利用可能な新規物質の提供。

【発明の詳細な説明】
【技術分野】
 本発明は、ハロゲン化水素塩、特には、水溶性に優れ、ホタル生物発光系における発光基質として利用可能なハロゲン化水素塩に関するものである。
【背景技術】
 生物発光系の中でも、ホタルの発光系は、発光効率に優れた系として知られている。該ホタルの発光系においては、発光基質であるホタルルシフェリンが、発光酵素のホタルル
シフェラーゼと、アデノシン三リン酸(ATP)及びマグネシウムイオン(Mg2+)の存在下、励起状態のオキシルシフェリンに変換され、該オキシルシフェリンが基底状態へと失活する際に波長が約560nmの黄緑色の蛍光が発せられる。
【0003】
 また、昨今、かかるホタルの発光系の発光基質の類似体として、多彩な発光波長を実現する化合物が合成されている。例えば、下記特許文献1には、ホタルルシフェリンのフェノール性水酸基を2級又は3級アミノ基で置換したルシフェリン誘導体が開示されている。また、下記特許文献2及び3には、ホタルルシフェリンと類似の分子構造を有するルシフェラーゼの発光基質が開示されている。
【0004】
 これらのホタルルシフェリン類似体の中でも、長波長の光、特には、波長が650nm以上の赤色の光を発する発光基質は、長波長光は生体内での透過率が高いため、生体内深部の病巣を可視化するための標識材料として有望であり、例えば、和光純薬工業株式会社から商品名「アカルミネ」として、長波長光を発するホタルルシフェリン類似体が市販されている。
 また、本発明者らは、更に検討を進め、ホタルルシフェリンと類似の分子構造を有しつつ、分子構造内に2つの芳香環を有する化合物がホタル生物発光系における発光基質とし
て機能し、更に、長波長の光を発することを見出している。
 しかしながら、上記ホタル発光系の発光基質類似体は、多彩な発光波長を実現できるものの、水溶性が低く、特に、生体内深部の可視化に有用な650nm以上の波長の光を発する発光基質で顕著である。一般に、マウスやラット等の実験動物の生体内への投与においては、発光基質は10~15mg/ml程度の溶解度を有することが必要であるが、上記の長波長光を発する発光基質は、水への溶解度が約0.1mg/mlであり、実用性に問題が有った。
 そこで、本発明の目的は、上記従来技術の問題を解決し、水溶性に優れ、ホタル生物発光系における発光基質として利用可能な新規物質を提供することにある。

発明の名称 クロム含有金属材料及びクロム含有金属材料の製造方法
技術分野 ものづくり, 環境/有機化学/無機化学, ナノテクノロジー
出願番号 特願2013-91618
概要

【要約】
【課題】皮膜密着性に優れた水素透過防止機能膜を有するクロム含有金属材料を提供すること。
【解決手段】ステンレス鋼又はクロムモリブデン鋼の金属材料と、前記金属材料の表面の少なくとも一部を被覆するクロム酸窒化物膜と、前記クロム酸窒化物の表面の少なくとも一部を被覆するセラミック膜と、を有し、前記クロム酸窒化物膜の膜厚は、0.01μm~1μmの範囲内にあり、前記セラミック膜の膜厚は、0.1μm~10μmの範囲内にある、クロム含有金属材料。

【特許請求の範囲】
【請求項1】
 ステンレス鋼又はクロムモリブデン鋼の金属材料と、前記金属材料の表面の少なくとも一部を被覆するクロム酸窒化物膜と、前記クロム酸窒化物の表面の少なくとも一部を被覆するセラミック膜と、を有し、前記クロム酸窒化物膜の膜厚は、0.01μm~1μmの範囲内にあり、前記セラミック膜の膜厚は、0.1μm~10μmの範囲内にある、クロム含有金属材料。
【請求項2】
 前記クロム酸窒化物膜中の酸素含有量は、10mol%以下である、請求項1に記載のクロム含有金属材料。
【請求項3】
 前記セラミック膜は、クロム窒化物、ボロン窒化物、アルミニウム酸化物、チタン窒化物及びケイ素炭化物の群から選択されるセラミックを含む、請求項1又は2に記載のクロム含有金属材料。
【請求項4】
 前記クロム酸窒化物膜及び前記セラミック膜は、各々、結晶質であり、かつ、結晶粒径が200nm以下である、請求項1乃至3のいずれか一項に記載のクロム含有金属材料。
【請求項5】
 前記金属材料はステンレス鋼であり、前記ステンレス鋼は、SUS316Lである、請求項1乃至4のいずれか一項に記載のクロム含有金属材料。
【請求項6】
 ステンレス鋼又はクロムモリブデン鋼の金属材料の表面の少なくとも一部にクロム酸窒化物膜を成膜する、第1の成膜工程と、前記クロム酸窒化物膜の少なくとも一部にセラミック膜を成膜する、第2の成膜工程と、を含み、前記クロム酸窒化物膜の膜厚は、0.01μm~1μmの範囲内にあり、前記セラミック膜の膜厚は、0.1μm~10μmの範囲内にある、クロム含有金属材料の製造方法。
【請求項7】
 前記第1の成膜工程及び前記第2の成膜工程の少なくとも一方は、物理的蒸着法により実施される、請求項6に記載のクロム含有金属材料の製造方法。
【請求項8】
 前記物理的蒸着法は、イオンプレーティング法である、請求項7に記載のクロム含有金属材料の製造方法。
【請求項9】
 前記クロム酸窒化物膜中の酸素含有量は、10mol%以下である、請求項6乃至8のいずれか一項に記載のクロム含有金属材料の製造方法。
【請求項10】
 前記セラミック膜は、クロム窒化物、ボロン窒化物、アルミニウム酸化物、チタン窒化物及びケイ素炭化物の群から選択されるセラミックを含む、請求項6乃至9のいずれか一項に記載のクロム含有金属材料の製造方法。
【請求項11】
 前記クロム酸窒化物膜及び前記セラミック膜は、各々、結晶質であり、かつ、結晶粒径が200nm以下である、請求項6乃至10のいずれか一項に記載のクロム含有金属材料の製造方法。
【請求項12】
 前記金属材料はステンレス鋼であり、前記ステンレス鋼は、SUS316Lである、請求項6乃至11のいずれか一項に記載のクロム含有金属材料の製造方法

発明の名称 固体高分子燃料電池カソード用の触媒およびそのような触媒の製造方法
技術分野 新エネルギー/省エネルギー, 環境/有機化学/無機化学
出願番号 特願2013-41734
概要

【要約】
【課題】高い活性を有し、良好な耐久性を有する固体高分子形燃料電池カソード用の触媒の製造方法。
【解決手段】遷移金属のイオンを含む溶液を調製するステップであって、前記遷移金属は、スズ、インジウム、タンタル、セリウム、タングステン、およびモリブデンからなる群から選定された少なくとも一つであるステップと、前記溶液中に、貴金属粒子が担持されたカーボン粒子を添加して、スラリー液を調製するステップであって、前記貴金属は、白金または白金合金であるステップと、前記スラリー液中で電解を行い、前記貴金属粒子上に前記遷移金属を電析させ、触媒粒子を形成するステップであって、前記電解は、前記遷移金属が前記貴金属粒子上には電析するものの、前記カーボン粒子上には実質的に電析されないような電位で実施されるステップと、前記触媒粒子を回収するステップと、を有する触媒の製造方法。

【特許請求の範囲】
【請求項1】
 固体高分子形燃料電池カソード用の触媒の製造方法であって、(a)遷移金属のイオンを含む溶液を調製するステップであって、前記遷移金属は、スズ(Sn)、インジウム(In)、タンタル(Ta)、セリウム(Ce)、タングステン(W)、およびモリブデン(Mo)からなる群から選定された少なくとも一つであるステップと、(b)前記溶液中に、貴金属粒子が担持されたカーボン粒子を添加して、スラリー液を調製するステップであって、前記貴金属は、白金(Pt)または白金合金であるステップと、(c)前記スラリー液中で電解を行い、前記貴金属粒子上に前記遷移金属を電析させ、触媒粒子を形成するステップであって、前記電解は、前記遷移金属が前記貴金属粒子上には電析するものの、前記カーボン粒子上には実質的に電析されないような電位で実施されるステップと、(d)前記触媒粒子を回収するステップと、を有することを特徴とする製造方法。
【請求項2】
 前記(c)のステップにより得られる前記触媒粒子において、前記貴金属と前記遷移金属の存在比(モル比)は、3:1から10:1の範囲であることを特徴とする請求項1に記載の製造方法。
【請求項3】
 前記(d)のステップの後、さらに、(e)回収された前記触媒粒子中の前記遷移金属を酸化させるステップを有することを特徴とする請求項1または2に記載の製造方法。
【請求項4】
 前記(d)または(e)のステップの後、さらに、(f)酸化物に変化しなかった前記遷移金属の少なくとも一部を溶解させるステップを有することを特徴とする請求項1乃至3のいずれか一つに記載の製造方法。
【請求項5】
 前記遷移金属のイオンを含む溶液は、水溶液、有機溶媒、または溶融塩であることを特徴とする請求項1乃至4のいずれか一つに記載の製造方法。
【請求項6】
 前記遷移金属のイオンは、スズイオンであり、前記遷移金属のイオンを含む溶液は、過塩素酸水溶液または硫酸水溶液であることを特徴とする請求項1乃至4のいずれか一つに記載の製造方法。
【請求項7】
 前記白金合金は、白金-コバルト(Co)合金、白金-金(Au)合金、白金-パラジウム(Pd)合金、白金-ニッケル(Ni)合金、および白金-鉄(Fe)合金からなる群から選定されることを特徴とする請求項1乃至6のいずれか一つに記載の製造方法。
【請求項8】
 前記(c)のステップにおける電解は、室温(20℃~25℃)以上、100℃未満の温度で実施されることを特徴とする請求項1乃至7のいずれか一つに記載の製造方法。
【請求項9】
 前記(c)のステップにおける電解において、作用電極として、メッシュ状電極が使用されることを特徴とする請求項1乃至8のいずれか一つに記載の製造方法。
【請求項10】
 固体高分子形燃料電池カソード用の触媒であって、当該触媒は、貴金属粒子が担持されたカーボン粒子を有し、前記貴金属粒子には、遷移金属の酸化物が配置され、前記貴金属は、白金(Pt)または白金合金であり、 前記遷移金属は、スズ(Sn)、インジウム(In)、タンタル(Ta)、セリウム(Ce)、タングステン(W)、およびモリブデン(Mo)からなる群から選定された少なくとも一つであることを特徴とする触媒。
【請求項11】
 前記白金合金は、白金-コバルト(Co)合金、白金-金(Au)合金、白金-パラジウム(Pd)合金、白金-ニッケル(Ni)合金、および白金-鉄(Fe)合金からなる群から選定されることを特徴とする請求項10に記載の触媒。
【請求項12】
 前記遷移金属の酸化物は、酸化スズ(SnOおよび/またはSnO2)であり、前記貴金属と前記酸化物の存在比(モル比)は、3:1から10:1の範囲であることを特徴とする請求項10または11に記載の触媒。
(以下省略)

発明の名称 蛍光体、その製造方法及び発光装置
技術分野 環境/有機化学/無機化学
出願番号 特願2012-272083
概要

【要約】
【課題】高輝度及び高効率であり、化学的安定性が高い蛍光体及びその製造方法を提供する。
【解決手段】一般式(1):(Ln1‐xREx)4(SiS4)3で表され、LnはSc、Y、Gd及びLuからなる群より選ばれる1種以上であり、REはLa、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb、Bi及びMnからなる群より選ばれる一種以上であり、xは0.001≦x≦0.6である、蛍光体である。

【特許請求の範囲】
【請求項1】
 一般式(1):(Ln1‐xREx)4(SiS4)3で表され、LnはSc、Y、Gd及びLuからなる群より選ばれる1種以上であり、REはLa、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb、Bi及びMnからなる群より選ばれる一種以上であり、xは0.001≦x≦0.6である、蛍光体。
【請求項2】
 結晶構造が単斜晶(空間群P21/n、No.14)である、請求項1に記載の蛍光体。
【請求項3】
 一般式(1)において前記LnがY及び/またはGdを含み、前記REがCeを含み、波長300nm~500nmにピークを有する光で励起する場合に、波長450nm~650nmに発光ピークを有する、請求項1または2に記載の蛍光体。
【請求項4】
 一般式(1)において前記LnがY及び/またはGdを含み、前記REがTbを含み、波長300nm~500nmにピークを有する光で励起する場合に、波長530nm~550nmに半値全幅1~50nmの発光ピークを有する、請求項1から3のいずれか1項に記載の蛍光体。
【請求項5】
 一般式(2):(R1‐yREy)6Si4S17で表され、RはLaであり、REはSc、Y、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi及びMnからなる群より選ばれる一種以上であり、yは0.001≦y≦0.1である、蛍光体。
【請求項6】
 結晶構造が三斜晶(空間群P‐1、No.2)である、請求項5に記載の蛍光体。
【請求項7】
 一般式(2)において前記REがCeを含み、波長300nm~500nmにピークを有する光で励起する場合に、波長400nm~650nmに発光ピークを有する、請求項
5または6に記載の蛍光体。
【請求項8】
 請求項1から4のいずれか1項に記載の蛍光体と、請求項5から7のいずれか1項に記載の蛍光体とを含む、蛍光体。
【請求項9】
 Sc、Y、La、Gd及びLuからなる群より選ばれる一種類以上の化合物と、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb、Bi及びMnからなる群より選ばれる一種類以上の化合物と、Si及び/またはSi化合物と、S及び/またはS化合物とを含む原料を混合する工程、及び前記原料を1000℃から1150℃で焼成する工程を含み、前記Sc、Y、La、Gd及びLuからなる群より選ばれる一種類以上の化合物と前記Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb、Bi及びMnからなる群より選ばれる一種類以上の化合物との混合物中の化学量論比が0.999:0.001~0.4:0.6である、蛍光体の製造方法。
【請求項10】
 前記焼成後、冷却速度150℃/分以上で冷却する工程をさらに含む、請求項9に記載の蛍光体の製造方法。
【請求項11】
 前記S及び/またはS化合物がS粉末及び/または硫化シリコン粉末であり、前記焼成を真空、不活性ガス雰囲気または還元雰囲気の閉管内で行う、請求項9または10に記載の蛍光体の製造方法。
【請求項12】
 前記S及び/またはS化合物が硫化水素及び二硫化炭素からなる群から選択させる1種以上のガスを含む、請求項9から11のいずれか1項に記載の蛍光体の製造方法。
【請求項13】
 請求項1から8のいずれか1項に記載の蛍光体を有する、発光装置。

発明の名称 熱可塑性樹脂チューブの溶着装置及び溶着方法
技術分野 ものづくり, 環境/有機化学/無機化学, 医工連携/ライフサイエンス
出願番号 特願2012-52967
概要

【要約】透明樹脂チューブ同士を複雑なチューブ回転機構や高価なレーザースキャン機構を用いることなく、簡単な機構により、短時間で溶着加工できる装置と方法を
提供する。

【特許請求の範囲】
【請求項1】
 2つの異径の熱可塑性樹脂チューブである外側チューブと内側チューブとを密着するように嵌め合わせた嵌合体を赤外線レーザー光を用いて加熱溶着する装置であって、前記嵌合体を支持する支持部材と、前記外側チューブの外周側に接触するように配置される赤外線透過性の固体ヒートシンクと、前記内側チューブの内周に接するように内側チューブ内に挿入される金属棒又は金属チューブと、前記固体ヒートシンク側に配置され、当該固体ヒートシンクを通して前記嵌合体に赤外線レーザー光を照射するレーザー光源とを具備することを特徴とする熱可塑性樹脂チューブの溶着装置。
【請求項2】
 前記固体ヒートシンクとレーザー光源との間に、前記嵌合体に照射される赤外線レーザー光の断面積を規定するマスクが介設されることを特徴とする請求項1に記載の熱可塑性樹脂チューブの溶着装置。
【請求項3】
 前記嵌合体に照射される赤外線レーザー光の直径が、前記外側チューブの直径以上に設定されることを特徴とする請求項1に記載の熱可塑性樹脂チューブの溶着装置。
【請求項4】
 前記外側チューブの外径が3mm以下であることを特徴とする請求項1ないし3のいずれかに記載の熱可塑性樹脂チューブの溶着装置。
【請求項5】
 2つの異径の熱可塑性樹脂チューブである外側チューブと内側チューブとを密着するように嵌め合わせて嵌合体を構成する工程と、前記小径チューブの内側にそれの内周に接するように金属棒又は金属チューブを挿入する工程と、前記嵌合体を支持部材上に支持する工程と、前記外側チューブの外周側に接触するように赤外線透過性の固体ヒートシンクを配置する工程と、前記固体ヒートシンク側のレーザー光源から当該固体ヒートシンクを通して前記嵌合体に赤外線レーザー光を照射する工程とを含むことを特徴とする熱可塑性樹脂チューブの溶着方法。
【請求項6】
 前記固体ヒートシンクとレーザー光源との間に、前記嵌合体に照射される赤外線レーザー光の断面積を規定するマスクを介設する工程を含むことを特徴とする請求項5に記載の熱可塑性樹脂チューブの溶着方法。
【請求項7】
 前記嵌合体に照射される赤外線レーザー光の直径が、前記外側チューブの直径以上に設定されることを特徴とする請求項5に記載の熱可塑性樹脂チューブの溶着方法。
【請求項8】
 前記外側チューブの外径が3mm以下であることを特徴とする請求項5ないし7に記載の熱可塑性樹脂チューブの溶着方法。

発明の名称 遷移元素触媒およびその製造方法、並びに選択的水素添加方法
技術分野 環境/有機化学/無機化学
出願番号 特願2010-137031
概要

【特許請求の範囲】

【請求項1】
白金、ロジウム、イリジウム、ルテニウムまたはレニウムから選択される金属イオンおよびパラジウムイオンを含む溶液を水素ガスと反応させて、前記金属イオンおよび前記パラジウムイオンを還元することによって得られ、
複数の不飽和結合を有する反応対象物の特定の二重結合部を選択的に水素添加することを特徴とする合金触媒。

【請求項2】
白金、ロジウム、イリジウム、ルテニウムまたはレニウムから選択される金属イオンおよびパラジウムイオンを含む溶液に含浸させた担体を水素ガス中に保持することによって得られる、請求項1に記載の合金触媒。

【請求項3】
前記金属イオンが白金イオンである、請求項1に記載の合金触媒。

【請求項4】
パラジウムイオンを含む溶液を水素ガスと反応させて前記パラジウムイオンを還元すること、および、
白金、ロジウム、イリジウム、ルテニウムまたはレニウムから選択される金属イオンを含む溶液を、水素ガス中で前記還元されたパラジウムを含む溶液と接触させることによって得られ、
複数の不飽和結合を有する反応対象物の1置換二重結合部または2置換二重結合部を選択的に水素添加することを特徴とする金属触媒。

【請求項5】
前記パラジウムイオンを含む溶液に含浸させた担体を水素ガス中に保持すること、および、
前記金属イオンを含む溶液を含浸させた担体を、水素ガス中で前記還元されたパラジウムを含む溶液に含浸させた担体と接触させることによって得られる、請求項4に記載の金属触媒。

【請求項6】
前記金属イオンが白金イオンである、請求項4に記載の金属触媒。

【請求項7】
パラジウムイオンおよび遷移元素イオンを含む溶液を水素ガスと反応させて前記パラジウムイオンおよび前記遷移元素イオンを還元する工程を含む、複数の不飽和結合を有する反応対象物の特定の二重結合部を選択的に水素添加することを特徴とする遷移元素触媒の製造方法。

【請求項8】
パラジウムイオンおよび遷移元素イオンを含む溶液に含浸させた担体を水素ガス中に保持する工程を含む、請求項7に記載の遷移元素触媒の製造方法。

【請求項9】
パラジウムイオンを含む溶液を水素ガスと反応させて前記パラジウムイオンを還元する工程と、
白金、ロジウム、イリジウム、ルテニウムまたはレニウムから選択される金属イオンを含む溶液を、水素ガス中で前記還元されたパラジウムを含む溶液と接触させる工程と、
を含む、複数の不飽和結合を有する反応対象物の1置換二重結合部または2置換二重結合部を選択的に水素添加することを特徴とする遷移元素触媒の製造方法。

【請求項10】
前記パラジウムイオンを含む溶液に含浸させた担体を水素ガス中に保持する工程と、
前記金属イオンを含む溶液を含浸させた担体を、水素ガス中で前記還元されたパラジウムを含む溶液に含浸させた担体と接触させる工程と、
を含む、請求項9に記載の遷移元素触媒の製造方法。

【請求項11】
請求項1~3のいずれか1項に記載の遷移元素触媒を、複数の不飽和結合を有する反応対象物を含む溶液中に、水素ガスの存在下で反応させることにより、前記反応対象物の1置換二重結合部または2置換二重結合部を選択的に水素添加するための方法。

【請求項12】
請求項4~6のいずれか1項に記載の遷移元素触媒を、複数の不飽和結合を有する反応対象物を含む溶液中に、水素ガスの存在下で反応させることにより、前記反応対象物の1置換二重結合部または2置換二重結合部を選択的に水素添加するための方法。

発明の名称 MgIn2O4の製造方法およびMgIn2O4材料
技術分野 新エネルギー/省エネルギー, 環境/有機化学/無機化学
出願番号 特願2009-143576
概要

【特許請求の範囲】

【請求項1】
MgIn2O4の製造方法であって、
(1)MgCO3およびIn2CO3を、MgCO3とIn2CO3のモル比が1.05:1.0~1.2:1.0の間の範囲になるように混合して、混合物を得るステップと、
(2)前記混合物を800℃~1000℃の温度範囲で、6時間以上焼成して、第1の焼成体を得るステップと、
(3)前記第1の焼成体を、1300℃~1450℃の温度範囲で、12時間~24時間焼成して、MgIn2O4を得るステップと、
を有する製造方法。

【請求項2】
前記ステップ(2)は、前記混合物を850℃~950℃の温度範囲で、6時間~12時間焼成して、第1の焼成体を得るステップであることを特徴とする請求項1に記載の製造方法。

【請求項3】
前記ステップ(3)は、前記第1の焼成体を、1350℃~1450℃の温度範囲で、12時間~24時間焼成して、MgIn2O4を得るステップであることを特徴とする請求項1または2に記載の製造方法。

(以下、詳細は特許公報をご参照ください)

発明の名称 ルシフェラーゼの発光基質
技術分野 環境/有機化学/無機化学, 医工連携/ライフサイエンス
出願番号 特願2008-23396
概要

【要約】

【課題】
ホタルルシフェリン類似構造を有する化合物。より詳細には、天然のホタルルシフェリンとは異なる発光波長で発光する複素環化合物の提供。

【解決手段】
以下の一般式

の複素環化合物。上記一般式において、R1、R2およびR3は、それぞれ独立してHまたはC1-4アルキルであることができる。上記一般式において、XおよびYは、それぞれ独立してC、N、SまたはOであることができる。上記一般式において、「n」として表されたオレフィン鎖部分は、所望の長さに変更することができる。

【特許請求の範囲】

【請求項1】
以下の一般式Iの複素環化合物またはその塩:

式中、
R1、R2およびR3は、それぞれ独立してHまたはC1-4アルキルであり、
XおよびYは、それぞれ独立してC、N、SまたはOであり、
nは、0、1、2または3である。

【請求項2】
R1、R2およびR3がそれぞれ独立してHまたはC1-4アルキルであり、
XがNであり、
YがSであり、並びに、
nが0、1、2または3である、
請求項1に記載の複素環化合物またはその塩。

【請求項3】
R1およびR2がそれぞれメチルであり、
R3がHであり、
XがNであり、
YがSであり、並びに、
nが0、1、2または3である、
請求項1に記載の複素環化合物またはその塩。

【請求項4】
nが0、1または2である、
請求項1に記載の複素環化合物またはその塩。

【請求項5】
請求項1~7のいずれか1項に記載の化合物をATPおよびMg2+と共に含む、発光検出のためのキット。

【請求項6】
請求項1~7のいずれか1項に記載の化合物を発光甲虫ルシフェラーゼと反応させる工程と、該化合物からの発光を検出する工程とことを含む、発光検出方法。

発明の名称 アナターゼ型酸化チタン微粒子及びアナターゼ型酸化チタン微粒子の製造方法
技術分野 環境/有機化学/無機化学
出願番号 特願2007-210787
概要

【特許請求の範囲】

【請求項1】
バンドギャップEgが、
3.87eV≦Eg≦4.13eV
であることを特徴とするアナターゼ型酸化チタン微粒子。

【請求項2】
液体中のルチル型酸化チタンからなる原料にパルスレーザー光を照射することにより生成されたことを特徴とする請求項1に記載のアナターゼ型酸化チタン微粒子。

【請求項3】
直径が20nm以下であることを特徴とする請求項1または請求項2のいずれか1項に記載のアナターゼ型酸化チタン微粒子。

【請求項4】
液体中に載置されたルチル型酸化チタン単結晶からなる原料にパルスレーザー光を照射する工程を備え、
前記原料に照射されるレーザーフルエンスfが、
f≧0.25J/cm2
であることを特徴とするアナターゼ型酸化チタン微粒子の製造方法。

【請求項5】
レーザーフルエンスfの大きさに基づいて生成されるアナターゼ型酸化チタン微粒子の量を調整することを特徴とする請求項4に記載のアナターゼ型酸化チタン微粒子の製造方法。

【請求項6】
log10Y=a×f+b
a,b:定数
に基づいて、パルスレーザー光1パルスで生成されるチタンイオンの量Yを制御することにより、アナターゼ型酸化チタン微粒子の量を調整することを特徴とする請求項5に記載のアナターゼ型酸化チタン微粒子の製造方法。

【請求項7】
原料と液体の液面との距離Dに基づいて生成されるアナターゼ型酸化チタン微粒子の量を調整することを特徴とする請求項4に記載のアナターゼ型酸化チタン微粒子の製造方法。
【請求項8】
log10X=c×D+A
c:定数
A:誤差
に基づいて、単位レーザーフルエンス(=1J/cm2)当たりで生成されるチタンイオンの量Xを制御することにより、アナターゼ型酸化チタン微粒子の量を調整することを特徴とする請求項7に記載のアナターゼ型酸化チタン微粒子の製造方法。

【請求項9】
前記液体は、蒸留水であることを特徴とする請求項4~請求項8のいずれか1項に記載のアナターゼ型酸化チタン微粒子の製造方法。

【請求項10】
前記液体は、アンモニア水であることを特徴とする請求項4~請求項8のいずれか1項に記載のアナターゼ型酸化チタン微粒子の製造方法。

発明の名称 ダイヤモンドライクカーボン膜の製造方法
技術分野 ものづくり, 環境/有機化学/無機化学
出願番号 特願2007-106493
概要

【特許請求の範囲】

【請求項1】
サファイア単結晶を含む基体を、触媒なしで、常圧の炭化水素ガス含有雰囲気中で1000℃以上に加熱することにより、前記基体の表面上に、炭化水素ガスの熱分解によるダイヤモンドライクカーボン膜を形成する工程を有することを特徴とするダイヤモンドライクカーボン膜の製造方法。

【請求項2】
前記加熱時間は60分以上であることを特徴とする請求項1記載のダイヤモンドライクカーボン膜の製造方法。

【請求項3】
前記加熱時間経過後、前記炭化水素ガスの供給を停止し、後処理用のガスを供給しつつ温度を徐々に低下させる工程をさらに有することを特徴とする請求項1または2記載のダイヤモンドライクカーボン膜の製造方法。

【請求項4】
前記炭化水素ガスは、プロパンを含有するガスであることを特徴とする請求項1乃至3のいずれか1項記載のダイヤモンドライクカーボン膜の製造方法。

【請求項5】
前記炭化水素ガスに水素ガスを混合することを特徴とする請求項4記載のダイヤモンドライクカーボン膜の製造方法。